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Abstract. The topological constraints imposed on a canonical transformation by the 
requirement of continuous connection to the identity are considered. In the case of a 
particle interacting with a periodic potential, it is shown that a transformation to normal 
form (new Hamiltonian independent of position) is in general impossible using a trans- 
formation satisfying this requirement; the best that can be done being a transformation to 
a Hamiltonian which is almost everywhere in normal form, but which retains potential 
barriers of infinitesimal width to reflect trapped particles. A new Hamiltonian-Jacobi 
theory based on Lie operator techniques is presented and its relation to the usual theory 
established. It is suggested that the new method enables the motion of a particle in a 
random potential to be transformed into an almost Markovian random walk. 

1. Introduction 

We have recently (Dewar 1976) set up the mathematical apparatus for systematic 
perturbative generation of regular canonical transformations, and have sketched out 
some physical motivations and consequences of making such a transformation in the 
case of particle motion in a random potential. The basic idea in this application was 
that there are two fundamentally distinct parts of the particle motion: a ‘coherent 
oscillatory’ motion, and a ‘purely stochastic’ part, and that the purely stochastic part 
could be isolated by removing the coherent part through a near-identity canonical 
transformation to new generalised coordinates and momenta, called oscillation-centre 
variables. 

A prescription was suggested for achieving this goal, based on the observation that 
the non-Markovian collision operator arising in renormalised perturbation theory acts 
as a filter, selecting out resonant terms and allowing them to appear as a residual 
interaction in the new Hamiltonian. Implicit in this prescription was the assumption 
that ‘resonant’ can be equated with ‘stochastic’. This is not unreasonable since it is 
known (Zaslavskii and Chirikov 1971) that stochastic behaviour is associated with 
overlapping non-linear resonances; but the lack of precise definition of terms must be 
regarded as a definite defect of our 1976 paper. In the present paper we adopt a more 
cautious approach and study a model system where some of the questions associated 
with oscillation-centre theory can be answered without resort to perturbation expan- 
sions and with reasonable precision. 

Of course, one can, in principle, solve a particle dynamics problem in any system 
of canonical coordinates. What we really want, however, is the ‘optimum’ system: one 
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in which no further simplification of the motion is possible. This leads us to a 
projective requirement: the prescription for setting up an oscillation -centre trans - 
formation must be such that it leads to no further change when re-applied to the 
transformed system. The filtering prescription of our previous paper does not meet this 
criterion. In this paper we present an alternative prescription, and verify in the case of 
a periodic stationary potential that the projective requirement is satisfied. Another 
reasonable requirement is that the new interaction Hamiltonian be minimal in some 
sense. Our new prescription also satisfies this, in that the L2-norm of the interaction 
Hamiltonian is not simply minimal, but vanishes altogether for the optimum trans- 
formation. 

A singly periodic potential is obviously not random, nor can the particle motion be 
truly stochastic. Nevertheless it does exhibit the property of allowing irreversibility. 
This is because two distinct parts of phase space (the positive and negative velocity 
parts) become mixed, in a narrow strip of phase space near zero velocity (the ‘trapping 
region’). By irreversibility we mean that if the potential is adiabatically switched on 
and adiabatically switched off again, then an initially stationary distribution function 
will not, in general, return to its original value (Dewar 1972). This irreversible 
behaviour also explains the damping of the amplitude oscillations of a large-amplitude 
plasma wave (O’Neil 1965, Mazitov 1965). Irreversible behaviour occurs only in the 
trapping region-outside this region an initially stationary distribution function will 
return to its original value after adiabatic switching on and off, and the motion in this 
region is termed reversible. 

We can now replace the notion of ‘purely stochastic’ with that of ‘purely ir- 
reversible’, and attempt a reasonable definition consistent with the projective 
requirement. Outside the trapping region there must certainly be no irreversible part 
of the motion, and we also wish to remove all the oscillatory information. Therefore 
we require that in oscillation-centre variables an untrapped particle simply free 
streams. That is, its momentum is a constant of the motion. In the trapping region we 
again remove all the oscillatory structure, but to give rise to irreversibility we cannot 
have the momentum as a strict constant of the motion. Instead we require the 
momentum to be a constant of the motion almost everywhere, except for regions of 
measure zero (which a particle intersects periodically) where the momentum changes 
instantaneously. Thus the particle is reflected to keep it in an orbit topologically 
equivalent to the true orbit, which is sufficient to retain irreversibility. This condition 
is fulfilled by our new prescription with a continuous Lie generating function. The 
difference between the true motion and the oscillation-centre motion defines (some- 
what tautologically) the coherent part of the motion. We find that secular terms can be 
avoided in all parts of phase space, and that the projective requirement can be 
fulfilled. 

In 9 2 we review the Lie operator method and introduce the new prescription for 
constructing the generating function. In P 3 we introduce a non-perturbative method 
for constructing the Lie generating function, and in § 4 and § 5 fie use it to construct 
generating functions for the cases of triangular and sinusoidal waves, respectively. 
Appendix 1 gives the details of the derivation of the result which allows us to relate 
conventional and Lie generating functions, and appendix 2 looks more closely than 8 3 
at the limiting process used to find the optimum transformation. 

Although no very advanced mathematics has been used, an attempt has been made 
to introduce modern mathematical terminology where appropriate. We feel that this 
improves the precision of the presentation, and might hopefully encourage mathema- 
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ticians to study the rather subtle question of the general existence of solutions to 
equation ( 5 ) ,  the Hamilton-Jacobi equation for the Lie generating function. 

2. Lie operators 

We are concerned with Hamiltonian systems in which the Hamiltonian H(x ,  p ,  t ;  E )  is 
of the form Ho + €HI  where Ho is independent of x ,  and E is a parameter ranging from 
0 (unperturbed system) to 1 (fully interacting system). For simplicity, we restrict our 
attention to one-dimensional systems. We denote by (x*, p * )  the canonical coor- 
dinates corresponding to the motion governed by H, and seek an area-preserving, 
one-to-one mapping of phase space onto itself. The area-preserving property is 
guaranteed for canonical transformations, but the second condition is quite restrictive 
and defines the subclass of regular canonical transformations (Sudarshan and 
Mukunda 1974). The physical point ( x * , p * )  is mapped on the nearby oscillation- 
centre position (x ,  p ) ,  whose motion is governed by the Hamiltonian K(x ,  p ,  t ;  E ) .  

Actually, we work with the inverse map, C(x, p ) =  (x" ,  p * ) ,  where C [which depends 
parametrically on t and E )  is called the clothing transformation (the idea being that the 
oscillation-centre coordinates represent the position of the 'bare particle', whose 
motion is stripped of irrelevant structure). As well as for denoting the exact coor- 
dinates, we shall use x *  and p* to denote the functions x * ( x ,  p ,  t ;  E )  and p * ( x ,  p ,  t ;  E) 
defining the transformation. 

We wish the oscillation-centre motion to be topologically the same as the true 
motion, so we require the clothing transformation and its inverse function, the 
oscillation-centre transformation, to be continuous (in fact, differentiable) functions of 
the canonical coordinates. (we shall sometimes be discussing discontinuous trans- 
formations, but only those which are formed as limiting cases of continuous map- 
pings.) The conditions of being one-to-one and onto, and being bicontinuous are 
summarised by saying that C is a homeomorphism (Roman 1975, p 221). As we 
require the stronger requirement of (piecewise continuous) differentiability, C is in 
fact a C'-difeomorphism. Physically, this just means that we can only deform phase 
space like a rubber sheet, without folding or tearing it. Finally, we require that the 
transformation lie in the identity component of the full group of canonical trans- 
formations (Sudarshan and Mukunda 1974); that is, that it reduce continuously to the 
identity as E + 0. These conditions are imposed because we hope eventually to develop 
a perturbation theory in which E is treated as a small parameter. 

The transformation C can be effected (Dewar 1976) by the use of an invertible 
linear operator CW, acting on functions of ( x ,  p ) .  We continue CW from the identity 
operator at E = 0 by the equation 

acw/aE = ~d~ (1) 
where LW is the Lie derivative W,a/ax - W,a/ap, the function W(x, p ,  t ;  E )  being the 
Lie generating function. The subscripts x and p denote partial differentiation with 
respect to the first and second arguments, respectively. For both x and p ,  the trans- 
formation is of the form (* = C&, where ( denotes either x or p .  From equation (l) ,  it 
follows that x *  and p*  obey Liouville-like equations of the form 

5: = I(*, W )  (2) 
where subscript E denotes the partial derivative with respect to the fourth argument 
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and {t*, W }  is the Poisson bracket between t* and W. Since (2) can be solved by the 
method of characteristics, it is equivalent to a pair of ordinary differential equations. 
A sufficient condition that C and its inverse function be differentiable everywhere is 
that W be twice differentiable (a less restrictive condition is that W, and W, satisfy a 
Lipschitz condition; cf, Ince 1956, § 3.22). 

The oscillation-centre Hamiltonian K is given in terms of H by (Dewar 1976) 

where subscript t denotes partial differentiation with respect to the third argument. A 
different but equivalent form can be obtained by operating on the left with CG', 
differentiation with respect to E ,  and left multiplication with C W :  

Wt + LK W = CwH, - K,. (4 ) 
If we replace K(x,  p ,  t ;  E )  in the above equation with a function I?($, t ;  E), in- 
dependent of x ,  and denote the solution by cfi we obtain what we shall refer to as the 
Hamilton-Jacobi equation for the Lie generating function : 

&', - LE@ = CqH, -E,. (5  ) 

We can construct a solution of equation ( 5 )  as a power series in E (cf Deprit 1969), 
I? being chosen so as to make cfi non-secular. Provided the series converges, cfi is 
differentiable and can be identified with W. (More precisely, we need the series 
formed by the derivatives of the terms of the €-series to converge uniformly.) 
Comparison of equations (4) and ( 5 )  then shows that K = I?, and hence p is a constant 
of the motion. That is, when the €-series converges the oscillation-centre motion is 
just free streaming. This is the reversible case mentioned in § 1. 

It is just when elementary perturbation theory breaks down that the interesting 
case of irreversibility occurs, which is why we have been led to seek analytically 
soluble models. In the vicinity of resonances it is clear that something must break 
down, since K cannot be strictly independent of x. This previously led us to assume 
(Dewar 1976) that no I? can be formed to make cfi non-secular. In the present paper 
we show this assumption to be false: I? can be found, but ci/ is everywhere finite and 
non-secular (at least in the cases studied). The 'catch' is that cfi has a cornice or cusp 
singularity on the separatrix, where its derivative with respect to p is infinite, and 
therefore it is inadmissible as a Lie generating function. We can, however, find a 
family of smooth functions Ws approximating ci/ arbitrarily closely as a parameter 
S + 0, and henceforth W will be taken to be one of these approximating functions. 

As will be seen in appendix 2, the corresponding transformation cs becomes 
discontinuous in the limit S + 0. Referring to figure 7 we see that, as we follow along 
the line p = constant, the point ( x * ,  p * )  traces out the contour H =constant, except 
that if the contour is closed this behaviour breaks down over a narrow interval in x ,  of 
width O(Sz). In this interval the point (x*, p * )  leaves the constant-H contour and 
jumps to the next trapping region. In the time-independent case equation (3) simply 
states that K(x ,  p )  = H(x*, p * ) ,  so we see that K is independent of x except for the 
narrow region of width O(S2) referred to above. We denote the departure from I? in 
this region by I?. Thus 

K = R + R ,  (6) 
where the support of R (i.e. the region where it is non-zero) has zero measure in phase 
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space in the limit as S + 0. (This is assuming the system to be confined within a large 
but finite box, or that we are using a measure d p  = f dx dp such that phase space has a 
finite total measure.) Since I? is finite, the integral of 2' over phase space tends to 
zero as S + O .  Hence, using the L2-norm (Roman 1975, p 399), \lRll+O as S+O. 
Similarly, the product of 2 with a smooth test function integrates to zero as S + 0. In 
generalised function theory such a function is said to vanish (Roman 1975, p. xxix). 
Borrowing from potential theory we term this a removable singularity. However its 
effect on particle dynamics does not vanish as S + 0 because, in classical mechanics, a 
potential barrier can be effective in producing scattering, no matter how thin it is. 

On the other hand, the corresponding singular contributions in equation (5) are 
negligible because they are integrated over in finding the solution. It is for this reason 
that we can satisfy the projective requirement. To see this, suppose K is obtained 
from equation (3) with W a close approximating function to the solution of equation 
(5). Now set E = 1, and regard K = I? + AR as the old Hamiltonian, that is, R replaces 
Ho, A replaces E ,  and 2 replaces HI. We now seek new oscillation-centre coordinates 
by solving equation (5) for a new @ (denoted by @') and a new Hamiltonian I?'. 
Suppose that at t = 0 we take @' = 0 and I?' = R. Then the right-hand side of equation 
(5) is just 2, which is a removable singularity in the limit S + 0. That is, the initial 
conditions will be propagated on to later times as we integrate equation (5) along the 
characteristics of the left-hand side. This shows that attempting to reduce the motion 
still further by a second oscillation-centre transformation will have no effect, 

3. Non-perturbative solution 

The conventional way (Goldstein 1950) of performing a canonical transformation is 
by means of a generating function F(x,  p ,  t ;  E )  such that the mapping is found by 
solving the equations 

x = F A X * ,  P,  t ;  €1, P* = Fx(x*, p ,  t ;  E )  (7) 

for x* and p *  as a function of x and p .  The generating function obeys the general 
Hamilton-Jacobi equation 

Ft(x*, p t ;  E ) + H ( x * ,  p * ,  t ;  E ) =  K(x,  p ,  t ;  E )  (8) 

which defines F if K, and appropriate initial conditions, are specified. Because our 
x*, p * ,  H correspond to the usual 4, p ,  H while our x, p ,  K correspond to the usual 
Q, P, K, we recognise F as a generating function of the second type (Goldstein 1950, 
p 241). 

In appendix 1 we show that equation (7) leads to the equations 

a p * / a E  = -Ip*, FE(x*, p ,  t ;  E ) }  

a x * / a E  = -{x*, F&*, p ,  t ;  E ) }  
(9) 

where { f ,  g }  denotes the Poisson bracket between f and g. Provided that F = x p  (the 
generator of the identity transformation) when E = 0, that a real F exists for all values 
of its arguments, and that Fxp # 0 everywhere, we can, by comparing equations (l) ,  (2) 
and (9), make the identification 

W(X, p ,  t ;  E ) =  - K ( x * ,  p ,  t ;  €1 (10) 
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with x* understood to be the function of x ,  p ,  t and E obtained from equation (7). It 
can also be verified that differentiation of equation (8) with respect to E gives rise to 
equation (4). As there is a large literature on the Hamilton-Jacobi equation, we have 
in equation (10) a potentially powerful means of finding non-perturbative solutions. 

The one-point principal function S(x*,  p ,  t ;  E ) ,  obtained as the solution to the 
Hamilton-Jacobi equation (8) with K=O, fails as a candidate for F. The main 
problem is that S has a secular component, so it cannot generate a near-identity 
transformation at all times. For instance, when E = 0 we have S = x p  -Ho(p)t .  One 
might hope that this problem could be solved by taking K =R(p,  t ;  E ) ,  with the 
function R chosen to remove the secularity. That is, that we could define F by the 
modified Hamilton-Jacobi equation 

F , ( x * ,  p ,  t ;  € )+H(X* ,  p * ,  t ;  E ) =  R(p,  t ;  E ) .  (1 1) 

When H is independent of t we can choose E @ ; € )  such that time-independent 
solutions of equation (11) exist. With F, = O  equation (11) becomes the equation for 
the one-point characteristic function (Goldstein 1950, p 280), which is used for 
obtaining the action-angle variable transformation. Unfortunately this version of 
Hamilton-Jacobi theory also fails, because the action-angle transformation is not in 
general a homeomorphism from phase space onto itself. We shall however be able to 
find a simple modification of the conventional theory which provides a suitable 
generating function. 

To see the problem more clearly we consider the case of a non-relativistic particle 
of unit mass, H o = i p 2 ,  and suppose that HI is a periodic function of x ,  but is 
independent of p and t. In this case, phase space has the natural topology of a 
Euclidean metric space. It is consistent to assume that Ft = 0, so that equations (7) and 
(1 1) yield 

(1 2) F,(x*,p;  ~ ) = * 2 ~ / ~ ( E ( p ;  E)-EHI(x  * )) 1/2 . 

The problem arises with trapped particles, for which is less than the maximum of 
HI, so that the argument of the square root in equation (12) passes through zero. Now 
it can be shown (see appendix 1) that the real function F, must exist for all x*  and p if 
F is to generate a diffeomorphism, a condition which is not fulfilled by Hamilton’s 
characteristic function as defined by equation (12). 

The solution to this problem is suggested by equation (6). Instead of requiring K to 
be independent of x everywere, we allow it to have an x-dependent component K such 
that 

@ , p ;  E ) =  (U; E ,  s )+EH1(X*)-E(p;  E ) ) +  (13) 
where A is a positive function tending to zero as S + 0 and the ‘+’ operation is defined 
for an arbitrary function f by 

( f ( x  )I+ = f ( x  ) O f ( X  1 (14) 
with e ( x )  the Heaviside step function. The motivation for the choice (13) will become 
clear when we calculate F,. For an untrapped particle vanishes identically as S + 0, 
while even for trapped particles we shall show that its support is of zero measure in 
phase space in the limit as S -+ 0. Nevertheless it plays the crucial role of reflecting a 
trapped particle. 

Substituting K = R +R in equation (8) and assuming Ft = 0 we find that 

F’ ( x * ,  p ; E )  = 2l/’sP [(K( p ; E )  - EH~(x*)  - A)+ + A] ‘I2 (15) 
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where s, is +1 or -1 accordingly as p 3 0 or p < 0. The crucial difference between 
equations (12) and (15) is that Fxp now exists for all x * .  The reason for introducing A is 
to ensure that F is single valued and that Fxp is strictly positive (see appendix 1). To 
make F reduce to the identity generator x * p  as E + 0 uniformly for all x*,  we require 
that F differ from x * p  only by a periodic function of x * .  If the periodicity length of the 
system is A ,  then this requirement implies 

p = 2”2s&h-1 JoA [ (R  - E H ~  - A)+ + AI1’* dx* 

which determines implicitly. Note that, since the transformation is time in- 
dependent, is just the total energy of the system. Thus, in the limit S + 0, Ap is the 
familiar adiabatic invariant $ p  dx of an untrapped particle, and is one half of the 
adiabatic invariant for a trapped particle. 

Because F now satisfies all the appropriate conditions we can use equation (10) to 
solve equation (4), if K is defined by equations (13) and (16). We denote the limit of F 
as S + 0 by the symbol 8. As we show in appendix 2, the support of R is of measure 
zero in the limit S = 0, whence we can use equation (10) to associate 8 with @, the 
solution of equation ( 5 ) .  Note that initial conditions have been assumed to be such 
that f i t  and kt are zero, which corresponds physically to adiabatic switching on of the 
interaction. Although this is not the most general solution, it is the most interesting 
because it leads to p being an adiabatic invariant. 

4. Triangular waveform 

The simplest analytically soluble waveform is the triangular waveform depicted in 
figure 1. Taking the wavelength A = 27r, we can express this waveform analytically by 

Figure 1. Two periodic, stationary interaction potentials plotted as functions of x. The 
triangular waveform of 8 4 is shown by the full line, and the sinusoidal waveform analysed 
in 0 5 is shown by the broken curve. 



16 R L Dewar 

the equation 

Hl(X) = 2l[x]l/.n - 1 ,  

where [XI = x - 2n.n. with n ( x )  an integer chosen such that -.n C [x] S .ne 
Integrating equation (15) with S = 0 we find 

where cx is +1 or -1 according as [ X I S O  or [XI <0,  and R ( p ;  E )  is determined from 
equation (16), which gives 

( p (  = 21/2(3€)-1[(R+€)3/2-(R-E):/2]. (19) 

The function R is graphed in figure 2, together with Ho, and for a sinusoidal wave. 

Figure 2. The spatially averaged part I? of the oscillation-centre Hamiltonian as a 
function of p for the triangular waveform (full curve) and the sinusoidal waveform (broken 
curve). The fully interacting case E = 1 is assumed. Note the non-analytic behaviour at 
p = 0 and, more weakly, at p = * p s  for both waveforms. The short dashes represent 
H 0 - p 2 / 2 .  

From equations (7) and (18) the transformation CO, the limit of c8 as S + 0 is given 
by 
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where lpl' denotes a l p l / d R .  In figure 3(b)  we show the image of the rectangular grid 
shown in figure 3(a) under the mapping (20), the images of the lines p =constant 
being just the phase-space orbits under H. In figure 3(a) the locations of the potential 
barriers are indicated by vertical bold lines at x = fm In figure 4 we plot x*  as a 
function of x for three values of p ,  one less than ~ ~ = 4 ~ ~ " / 3  (the value on the 
separatrix), one equal to p s ,  and one greater than p s .  

P' 

Figure 3. ( a )  A rectangular grid defined on phase space. The arrows indicate the oscil- 
lation-centre trajectories, while the 'cuts' at x = *r show the positions of the thin 
potential barriers which keep the trapped-particle trajectories topologically circular. The 
separatrix is shown by the line with long dashes. (b) The image of the rectangular grid of 
(a) under the transformation CO defined by equation (20). The arrows indicate the exact 
trajectories. 
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Figure 4. The exact position x *  as a function of the oscillation-centre position x for values 
of p such that I f  = - e / 2  (deeply trapped particle), I f  = e  (particle on separatrix), and 
If = 4.56 (untrapped particle). (e = 1 assumed.) 

It is seen that, for / p i  < p s ,  the transformation is discontinuous at x = ( 2 n  + l ) ~ ,  
n = ~ ,  *I, * 2  , , ., x*  jumping from ( 2 ~ n + 7 r ( R + ~ ) / 2 e )  to ( 2 n ( n + 1 ) -  
T(R + E ) / ~ E ) .  But this is just the range of x *  for which R S HI. Comparison with 
equation (13) shows that this is the region over which 2 is non-zero. That is to say, the 
support of includes the set of points {(x, p ) \ x  = (2n  + l ) ~ ,  lpl < p s } ,  which make up 
the lines dividing one well from another. These infinitely thin potential barriers serve 
to reflect a trapped particle so that its orbit is rectangular, as indicated on figure 3(a) .  
It is shown in appendix 2 how this may be regarded as the limiting case of a continuous 
motion. It is also shown there that the support of I? includes the line p = 0. 

/ 

R 1 

F i p e  5. The Lie generating function @ as a function of x for R = -4, 1 ,  and 4.5 (e = 1 
assumed). 
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It remains to construct @ using equations (lo), (18)-(20). We find 

@ = -21’23-’.rrsa;{3E-’(2--1/21pI-(R - E ) f l 2 ) 1 [ X ] 1 / 7 T  

-3(R + E ) 1 ~ 2 ( / p ( ’ ) 2 [ x ] 2 / t T 2 + 2 1 / 2 € ( ~ p ~ ’ ) 3 ~ [ X ] / 3 / ? T 3 } .  (21) 

Note that the factor is multiplied by a term which goes to zero as ~ + 0 ,  since 
R d H o  as E + 0 ( p  being held fixed). Thus @ is regular at E = 0. 

We graph @ as a function of x in figure 5, and as a function of p in figure 6 .  Note 
that @ is a continuous function. However it is singular at p = *ps  where the derivative 
with respect to p becomes infinite, and here @ violates the differentiability condition 
( Q  2). This explains how @ can generate the discontinuities in Co. Note also that @ is 
smooth (in fact analytic) on the line p = 0, so that the only points where @ is not 
‘suficiently smooth’ are along the lines p = * p s .  This is-important because it shows 
that the singular points of @ lie outside the support of K in the limit S + 0. Thus the 
singularities of LR W are ‘removable’, so that equation (4) does indeed go over into (5) 
as S + O .  

Figure 6. The Lie generating function 
Note the singular behaviour at p = i p s .  

as a function of p for x = 12/4, m/2 ,  and 3m/4. 

5. Sinusoidal waveform 

While the triangular waveform is simple, it is rather unphysical because of the 
discontinuous behaviour of its x derivative. The simplest infinitely differentiable 
periodic potential is the sinusoidal wave 

Hl(X) = -cos x ,  (22) 
which is also depicted in figure 1. From equation (15) the conventional generating 
function in the limit S = 0 is found to be 

P(x, p ;  E )  = 23/2sp(R + Re E(;x, K ) ,  (23) 
where E ( ~ , K )  is the elliptic integral of the second kind (Gradshteyn and Ryzhik 
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1965), with K determined from the relation K' = 2 e / ( R  + E ) .  For trapped particles we 
have ~ > 1 ,  but equation (23)  remains valid provided we take the real part as in- 
dicated. 

The relation between the average oscillation-centre Hamiltonian and p is 

IpI = 2 3 / 2 ~ - 1 ( K  + € ) ' I 2  Re & ( K ) ,  ( 2 4 )  

E being the complete elliptic integral of the second kind. The value of lpl on the 
separatrix is p s  = ~ E " ~ / T ,  which is close to the value 4e1I2/3  for the triangular wave. 
In fact figure 2 shows that the behaviour of R ( ~ ; E )  is very similar for the two 
waveforms, except near the points p 3 0  and p = * p s .  

The transformation generated by F is, for untrapped particles ( 1  p (  > p s )  

where U =I$x/.rr, q =exp (--TK'/g) (Gradshteyn and Ryzhik 1965). For the trapped 
particles ( ( P I  < p s )  we find sin$x* = K~ sn u l ,  so 

where subscript 1 means that the same definition as for untrapped particles is to be 
used, except that K is to be replaced by K ]  = K - ' .  As for the triangular waveform, the 
transformation is discontinuous in the trapping region. 

Using equation (10) we find, for lpI > p s  

where Z ( u ,  K )  is Jacobi's zeta function (Abramowitz and Stegun 1964, p 576). For 
lpl < p s  we find 

with u1 = & I X / T  and so on, as in equation (26) .  

the approximate results for particles with lpl slightly greater than p s ,  and [[x]1 < T :  

In order to understand better the behaviour near the separatrix, we have derived 

[x*] = 2 gd U 

p*  = 2 ~ " ~ s ~  sech U 

@ = - 2 ~ ~ ~ - ~ / ~ ( t a n h  U -- [XI) T 

(29) 
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mannian function 2 tan-’ (exp u)-$.rr (Abramowitz and Stegun 1964). As IpI + p s ,  
~ ’ 3 0 ,  and [x*] approaches the step function .rrlxl/x, while p * + O .  That is, nearly all 
points on the lines lpI = p s  are projected by t h s m a p  CO onto the stagnation points 
x *  = (2n - l ) ~ ,  p *  = 0. This is due simply to the fact that, for any smooth waveform, a 
particle on the separatrix takes an infinite time to reach a crest of the wave. Since the 
oscillation-centre velocity Kp is a constant of the motion (between reflections), the 
oscillation-centre interval A x  is proportional to the time Ar spent by a particle in 
traversing this part of its orbit. This weighting implies that an infinitesimal interval 
Ax* in the neighbourhood of a stagnation point corresponds to a finite interval A x  in 
oscillation-centre picture. A corollary of this is that xp += 0 as p + p s .  

Note that @ approaches a sawtooth profile as Ip/ + p s .  The complicated nature of 
the behaviour on the separatrix in the sinusoidal case is another reason for studying 
the simpler triangular waveform first. As for the triangular waveform @ is continu- 
ously differentiable on the line p = 0, although, unlike the previous case, it is not 
analytic there. 

6. Discussion 

Although the method we have used in this paper to obtain Lie generating functions is 
limited to the rare cases where the Hamilton-Jacobi equation for Hamilton’s charac- 
teristic function can be solved analytically, it is important because it has allowed us to 
establish the existence of solutions to the ‘Hamilton-Jacobi equation for the Lie 
generating function’, equation ( 5 ) ,  outside the radius of convergence of the elemen- 
tary €-series. Moreover, we have shown that the existence of cusp-type singularities in 
the generating function leads to a residual interaction in the form of thin potential 
barriers which preserve the topological character of the ‘invariant tori’ to which the 
trapped-particle orbits are confined. More interesting would be a ‘non-integrable’ 
system in which the invariant tori are disrupted, leading to ‘stochastic’ regions of 
phase space (Zaslavskii and Chirikov 1971). If equation ( 5 )  can also be solved for such 
a system, this raises a very exciting prospect. It means that we can find a new 
Hamiltonian for which scattering occurs only off potential barriers of infinitesimal 
width, the motion elsewhere being in straight lines. Since the scattering events are 
instantaneous in this picture, it is reasonable to suppose that the process is describable 
by a Boltzmann-like equation. Speculating further, we conjecture that the highly 
non-linear nature of the transformation will make the positions of the potential 
barriers extremely unpredictable in space and time, so that the oscillation-centre 
motion will be essentially Markovian. 

The elementary perturbation theory we have referred to is the expansion in terms 
of the bare propagator (a, + LHJ’. There may be more sophisticated perturbation 
theories which converge everywhere, and even if this is not the case there are 
techniques for handling divergent series. The existence of an analytic solution will be 
very useful for checking the validity of such techniques. Even elementary perturbation 
theory is still useful, of course, for calculating phase-space averages, such as densities 
and currents, since the convergence is much improved by the integration over phase 
space. 

Another promising approach towards establishing the nature of the general solu- 
tion of equation ( 5 )  is that of computer solution, since the Lie transform method lends 
itself to numerical implementation. 
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Appendix 1 

In this appendix we derive equation (9) from equation (7). For generality we consider 
a Hamiltonian with N degrees of freedom, and use the Einstein summation con- 
vention. The general form of equation (7) is 

qi = (2 9 * , p  

Pi*= (5) 
4*.P 

where F denotes F(q*,  p ,  t ;  E ) ,  and the 'thermodynamic' notation for partial differen- 
tiation is used, in which the variables to be held constant during the differentiation are 
indicated as subscripts to the parentheses surrounding the derivatives. Thus, the 
subscripts y*, p indicate that the variables q: and pi ( j  = 1,2 ,  . . . , N )  are to be held 
fixed (with the exception of the variables with respect to which the derivative is being 
taken). As it is always clear whether or not E and t are fixed, we have no need to 
indicate this explicitly. 

Differentiation of equation (A. 1) with respect to E, with q and p being fixed, yields, 
on using (A.2) to eliminate aF/aq,+, 

Contracting with (apk/ap*)q*,p* we find 

We recognise the right-hand side as the Poisson bracket -{q*, Fc}q*,p* taken with 
respect to q* and p * .  But as Poisson brackets are invariant under canonical trans- 
formation (Goldstein 1950, p 254) we have found the first of the sought-for equations, 

To proceed further, we need the lemma 

which is proved by differentiating (A.l)  with respect to E ,  using (A.l)  to eliminate 
aF/api, and contracting with (aq:/aqk)4,p. 

We now differentiate (A.2) with respect to E and use the lemma (A.4) to find 

In the last term of the above we recognise the factor (ap?/aqk),,, = -(dpk/aq*)q*,p*, by 
the theorem on invariance of Poisson brackets. Thus the right-hand side of the above 
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is (aFJaq1*)4=.P*, whence 

which is the second of the equations to be proved. 
If equations (A.3) and (A.5) hold for all 4 and p ,  with F(q*, p ,  t ;  O)= 4Tpi and with 

F, being a sufficiently smooth function of 4 and p that the solutions q* and p*  depend 
differentiably on the initial values 4 and p (Ince 1956), then we can make the 
identification (10) uniquely, to within a constant function of 4 and p .  

It can be shown (cf Sudarshan and Mukunda 1974, p 58) that the differentiability 
condition is satisfied if and only if 

det IIF4*Pj (4 * 1 P ,  t ; E )I1 # 0 

for all values of the arguments. (For the one-dimensional case of this paper, this 
becomes Fxp # 0). If the determinant is never infinite, the condition of continuous 
connection with the identity implies that it is strictly positive (Fxp > 0). 

As F(4*,  p ,  t ;  E )  depends only implicitly on 4. the significance of the condition that 
it exist for all 4 is not immediately apparent. An intuitive understanding of the 
situation in the one-dimensional Cartesian case can be obtained by considering the 
mesh formed by the lines x =constant, p =constant (cf figure 7). The continuity 
condition and the area-preserving nature of the transformation imply that the lines 
p = constant never touch or break (and similarly for the lines x = constant), and that 
they cover the entire phase space. Thus x* and p must be a suitable coordinate system 
over the whole of phase space and F(x* ,  p ,  t ;  E )  must exist for all x* as well as all x .  
Note that F can become multivalued if the lines are sufficiently twisted (signalled by 
Fxp becoming infinite), but that it must have an odd number of branches. Since the 
square root in equation (12) leads to an even number of branches, we must modify 
(12) in such a way as to avoid the branch point. Thus we have been led to introduce 

6=030 D' 

Figure 7. The image of the rectangular grid of figure 3(a )  under the map ca. The case 
6 = 0.3 is shown. 
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the positive function A into equation (15) to keep F, single valued. As will be seen in 
appendix 2, A can be chosen so as to keep F,, strictly positive. This is especially 
significant at the separatrix IpI = p s ,  where (12) leads to Fxp being zero for all x*  (in the 
case of smooth HI). 

Appendix 2 

In this appendix we investigate the properties of the generating function F defined by 
equations (15) and (16) for small but finite S. For definiteness we consider the 
triangular waveform of 9 4. Without loss of generality we can restrict initial attention 
to the half period 0 s x *  d T. It is first of all necessary to determine the value of x *  at 
which R becomes non-zero. Denoting this value by X * ( p ;  E, 8) we find from equation 
(13) 

X* = min[T(R + E  - A)/2e, T]. (A.6) 
The integral (16) can now be performed by noting that A can be replaced by T, owing 
to the symmetry about x *  = T, and then by breaking the interval [0, T] into the 
subintervals [0, X*] and [X*, T], in which the integrands are respectively (I? - E H ~ ) ~ / ’  
and A“’. We find 

2”’(3~)-’(I? + 
21/2(3~)-’[(R + 

+ (2A)’/’[ 1 - (I? + E ) / ~ E ]  + 21”(6~)-iA3” 

- (R - E ) ~ ” ]  IPI ={ 
for ( p (  < p c  and [ p i  Bp,, respectively. Here pc,  the momentum at which X* = T, is 
implicitly defined by 

p c ~ 2 ” ’ ( 3 ~ ) - ’ [ ( 2 ~  +Ac)3’2-A:/2] (A.8) 

9. = { (x ,  P)I I[x*ll > X * ( p ;  €9 a), IPl <Pel. 

with Ac=A(pc; e, 8). In terms of X* and p e  the support 9’8 of I? is defined as the set 

From equation (15) we see that A cancels outside the support of k (that is for 
(x ,  p )  E Y’i, where 9’; is the complement of 9’6). In this region the only dependence of 
F on A is implicitly, through g. Thus equation (20) remains valid in 9’& provided (19) 
is replaced by (A.7). Within 9’8, on the other hand, we have F, = Il(p; E ,  S), where 

II E (2A)1’2s,. (A.9) 
By matching to the solution in 9’; we have, if x is near (2n - l ) ~ ,  (n  = 0, *l, *2, . . .), 

(A. 10) 

for (x ,  p)eYa. We shall denote the transformation so determined by the symbol ca. 
So far we have refrained from specifying A beyond saying that it is positive and 

that A - 0  as the parameter 8-0. We have also assumed for simplicity that it is 
independent of x * .  It is more convenient to specify II, which is somewhat arbitrary 
with the exception of its behaviour near p = 0. The reason that p = 0 is special is that s, 
is discontinuous there, and I’I must be specially chosen to remove the effect of this. 
With II independent of x*  the only way we can ensure continuity is by demanding that 
Ca be locally equal to the identity transformation in the neighbourhood of p = 0. This 
is ensured by including the x axis in 9’8 and by demanding IIp = 1 at p = 0. In order to 

F = (2n - 1)rp +II[x*- T] 
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ensure that Fxp is strictly positive within 96, we must also demand that l Ip  be positive 
for all p .  A simple choice satisfying these conditions is 

II = s tan-' ( ~ / E " ~ S ) .  (A. 11) 

With this choice we can give a more explicit description of Yk as the set 

(A.12) 

It is seen that as 6 + 0, .YS collapses onto the union of the lines p = 0 and { ( x ,  p ) ) x  = 
(2n+1)7r, Ip /<ps } ,  n =O,*I, *2 , .  . .. 

In figure 7 we show the image of a rectangular grid under the map ca. As S + 0 the 
situation approaches that depicted in figure 3(b). The trapping regions are linked by 
'tubes', into which the lines p = constant are constricted, and which become thinner 
and thinner as S + 0. The area preserving property implies that the lines x = constant 
are squeezed out the ends of these tubes, thus giving rise to the discontinuity seen in 
figure 4. In figure 8 we show the image of a rectangular grid under the map Ck-' 0 Co. 
The images of the lines p =constant are just the phase-space orbits under the Hamil- 
tonian K(x,  p; E, S ) ,  the region where they deviate from straight lines being the 
support 9 6  of R(x, p ;  E, 8). 

I I I I I I I . .  I I I 

X 

I I I 1 1 - 1  I I I ! I I I 

Figure 8. The image of the rectangular grid of figure 3(n)  under the map Ca' 0 CO, or of 
the curvilinear grid of figure 3(b)  under the map Ca'. The case S = 0.3 is shown. The 
arrows indicate the oscillation-centre trajectories under the Hamiltonian R + R deter- 
mined by equations (13) and (16). 
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